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A description is given of an approximate method of calculating heat
flux under steady free thermal convection in a rectangular region.
This method is based on the assignment of flux and temperature func-
tions in the form of polynomials satisfying the boundary conditions
for any values of the coefficients.

The system of equations describing free thermal
convection [1, 2],
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may be reduced, for a steady axisymmetric problem
with acceleration of body forces varying over the
radius, to three dimensionless partial differential
equations [3].

It should be noted that the first of the original
equations is valid, in the form in which it has been
written, only when with uniform femperature distri-
bution the body (gravitational) forces do not give an
appreciable pressure gradient. This restriction is
removed if the penultimate term of the equation ex-
amined is represented in the form g_(1 —- Bd).

In the case, simpler than in [3], of a plane prob-
lem with constant acceleration of body forces, the
original system, as may easily be seen, reduces,
for steady motion under conditions of parametric
linearization, to two equations,
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The procedure, employed in solving linear equa-
tions, of first finding functions which satisfy the equa-
tions identically and then taking them in linear com~
bination to satisfy the boundary conditions, is not
valid for nonlinear equations such as (1) and (2). To
obtain an approximate solution of the system being
examined, having assigned a form for each of the
unknown functions in a manner satisfying the boundary
conditions, we may choose the unknown coefficients
so as to satisfy the equations of the system in the best
manner.

For thermal convection in a closed region, the
boundary conditions for the stream function have the
form (the first two equations reflect the absence of
motion of the medium—"zero-slip" at the boundary)
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Fig. 1. Schematic of the calculation region

and dependence of the scale of convective

motion ag on the relative width h of the re-
gion when G = 1.

Here the boundaries of the rectangular region are
assumed to be parallel to the coordinate axes of Fig.
1. The stream function at the boundary may have an
arbitrary constant value, in particular, ¥ = 0.

The above boundary conditions are satisfied by
any polynomial of the form

= (2= = Nagmgr (8)

The motion described by such a polynomial, for a
sufficiently great extent of the sheet in the direction
perpendicular to the plane xy, has the form of a cyl-
inder. A similar form of convective metion was ex-
amined in [4].

Using this expression, and integrating the left and
right sides of Eq. (1) with respect to y over the in-
terval corresponding to the region examined, we ob-
tain
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Here the first summation is carried out only for
even n, and the second only for odd (n + q),
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In conformity with (4), the convective motion is
determined only by the temperature difference in the
vertical walls (y = +h). As far as the temperature of
the horizontal walls is concerned, they have their -
own indirect influence on the convection: the larger
the difference between the temperatures of the hori-
zontal walls, the larger the temperature difference
initially in the ascending and descending streams,
and the larger the temperature difference (other con-
ditions being equal) of the corresponding vertical
walls.

If the temperature difference is identical over both
vertical boundaries of the region, and Hymn—tly=—p =0,
we may conclude, on the basis of (4), that convective
motion is absent. In the cases of practical interest,
an ascending stream passes along the heated wall, and
its temperature proves to be higher than it is on the
wall from which heat is drawn away. With adiabatic
vertical walls (having perfect thermal insulation), the
temperature of the wall along which the ascending
stream passes will also be higher,

Because it is, in general, impossible for any fi-
nite values of m and n to satisfy (4) identically, it is
necessary, in order to obtain the maximum attain-

able accuracy, to determine the coefficients in such
1

a way that the value of the integral | A%x is a mini-

=1
mum.

This condition will be satisfied by values of ampp
which are roots of the system of equations of the type
1
9 (Azdx 0. (5)
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The boundary conditions with respect to tempera-
ture are determined by the thermal state of the walls,
for example, their temperature. It is then convenient
to assign the temperature distribution in the form of
a sum of a function t; satisfying the boundary tempera-
ture conditions, and of a polynomial that vanishes at
the boundary,

=ty + (2 — 1) (0" —F) Y amym. (6)

In the motionless layers adjacent to the boundaries
of the region, the temperature must change along the
normal to the boundary faster than in the central zone,
where convective motion plays an appreciable role in
heat transfer. Therefore a function describing the
temperature distribution inside the region being ex~
amined must contain terms at least of third degree
for each of the variables. It may be expected that in
the majority of cases this degree will be sufficient
to approximate to the assigned temperature distribu~
tion at the boundaries (ten reference points),

In the solution of many problems we require to
determine only the heat flux at the boundaries of the
region, where the velocity of convective motion is
clearly zero. In cases when it is not necessary to
obtain accurate data on local velocities of convective
motion inside the region, we may confine ourselves
to an evaluation of its over-all effect in the heat trans-
fer process. Then, reckoning a direct progressive
dependence of the burden of the calculations on the
number of terms under the summation sign in (3), ‘it
is expedient to seek ¢ in the simplest form,
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With this form given for ¢, we shall examine the
problem for a constant temperature difference of the
vertical boundaries {lp—t{—n=1 (e. 8., o=
=y/2h). To this end we substitute the left part of (4)
into (5), retaining only terms with m = n = 0, It should
be noted that any more complex form of assignment of
¥ leads to a system of cubic equations for determining
the coefficients apn, while the second sum in {4), in
which only terms with odd values of (n + q) appear,
vanishes for such a simplified form of ¥, and the co-
efficient ay; is found from the linéar equation

Qo0 = 35G (1 - A1)Y/128(10 + 140* +- T K. (8)

Figure 1 shows graphically the relation between
@y and h with G = 1. Using this graph it is easy to
find ayg also for other values of G, taking into account
the linear relation (8) between these quantities.

If we substitute into (2) ¥ from (7) and t from (6)
with the conditions in question, it takes the form
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This equation will be most accurately satisfied by
values of by which are roots of the system of equa-
tions of type

or
0b

mn

=0, (10)

From al/aboo = aI/abll = 0 we find
735640 (3 -+ 542 4 3h%) — 64Page by h* (1 —h%) =0,  (10a)
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A system of linear homogeneous algebraic equa-
tions such as (10a) and (10b) is satisfied by the zeroth-
order solution for any ratios of the dimensions of the
region and the physical properties of the medium.
Therefore, by = by = 0.

From 81/8by; = 81/8by = ¢ we find
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Knowing P, h, and ay, it is not difficult to find
byy, by from the system (10c) and (10d). A particu-
larly simple solution is obtained for a square region
(h = 1), in which the last terms in both these equa-
tions become zero, and the system breaks down into
two separate equations.

Once the coefficients by, and by have been found,
the calculation may be refined by substituting t from
(6) into (1) and repeating the determination of gy,
and then of by; and by.

The local coefficient of heat transfer from the wall
to the medium, referred to the difference between
the wall temperature and the mean temperature of
the medium, is determined from the formula

a:—}u-ét—- to.
on

At the vertical boundaries of the region
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Tig. 2. Dependence of convection coefficient ¢

on Ra uwumber for a rectangular region. The

numerals on the curves correspond to the rel-

ative width h of the region. The broken line is

the analogous experimental relationfor a layer
of constant thickness according to {3}

The actual temperature of the medium proceeding
toward the horizontal boundaries of the region may
differ in isolated sections from the mean tempera-
ture level by more than the boundary temperature
does at the same point. Therefore, as the foregoing
expression also shows, infinitely large and negative
values of local heat transfer coefficient are formalily
possible.

The mean heat flux from unit surface of the verti-
cal boundary is

1
g=— - 51@ ﬁt_i dx:lg—( 1 Spoby |
2 l an | 2k 3 /

y=h
In the absence of convection,

q = )\@/2”1
Thus, the convection coefficient is

8
& == 1——3—h3b01.

A comparison is made in Fig. 2 of the curves, con-
structed using the method of calculation described,
of the dependence of & on Rayleigh number, of which
by; is a function, for a rectangular region, and the
analogous curve based on the experimental data of
[5] for a constant thickness layer. For convenience
of the comparison, the reference dimension for both
the rectangular region and for the layer has been taken
as the distance 2lh between the vertical boundaries.
Comparison of the results for the rectangular re-
gion and the layer is valid, because internal circula-
tion loops are created on opposite sides in a plane
vertical zone with constant temperature on each wall,
due to mutual disturbance of the flow of layers of the
medium. There is contrary motion at the junctions
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of these loops, and therefore the velocity of the me-
dium vanishes at the loop boundary, in a similar man-
ner to what takes place at the horizontal boundaries

of the rectangular region.

As was to be expected, the simplified form as-
sumed for assigning ¥ does not give a sufficiently
accurate description of the process over a wide range
of Ra numbers. The variation of convection coefficient
as a function of Ra number is suitable for the rectan-
gular region and the layer onlyfor comparatively small
values of Ra, up to £ = 3.

By using a more complex form of assigning ¥ and
t, and also by taking certain other steps, the range
of usefulness of the above method may be widened,
but the results already obtained are evidence that con~
vective transfer in a region increases at the lowest
values of Ra, when its form is close to square. It
should be noted that the graph for the layer passes
between the straight lines corresponding to h = 0.3
and h = 0.5. This is in good agreement with existing
data on the longitudinal section of an internal circula-
tion loop (cell) in a gap of length 2 or 3 times its
width. Moreover, the fact that the degree of variation
of € as a function of Ra increases with increase of h
is interesting. The graphs of Fig. 2 also permit us
to obtain more accurate material for preliminary
estimation of & at high Ra values by extrapolation,
by use of the analogy between a rectangular region
and a slot.

NOTATION

v—velocity vector of medium; p—medium density; p—pressure;
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g—acceleration of body forces; §—temperature, computed from some
mean level for the case examined; c~temperature coefficient of
density; v, x, B—kinematic viscosity, thermal diffusivity, and volume
thermal expansion; x, y—coordinates referred to a definite dimension
1, assumed in the given case to be half the extent of the region in
the direction of the x axis, which coincides with the direction of
action of the body forces; ¥ —dimensionless stream function; =40,
where ® is a characteristic temperature difference; G=g81°®/1* —
Grashof number; P—Prandtl number; Vy and Vy—projections on the
corresponding coordinate axes of the dimensionless velocity (local
Reynolds number); h—ratio of horizontal and vertical dimensions of
the region; A—left side of Eq. (4); tp—a function satisfying the ther-
mal conditions at the boundary; I—integral over the region being ex-
amined of the square of the left side of Eq. (9); a—local coefficient
of heat transfer from wall to medium, referred to the difference be-
tween wall temperature and mean temperature of medium; A—ther-
mal conductivity of medium; q—heat flux per unit surface; &~con-
vection coefficient; Ra = 8h3GP—Ray1eigh number.
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